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Abstract

Replacing configurations of points by configurations of tubular neighbourhoods (or discs)
in a manifold M we are able to define a natural scanning map that is equivariant under
the action of the diffeomorphism group of the manifold. We also construct the so-called
power set map of configuration spaces diffeomorphism equivariantly. Combining these two
constructions yields stable splittings in the sense of Snaith and generalisations thereof that
are equivariant. In particular one deduces stable splittings of homotopy orbit spaces. As an
application the homology injectivity is proved for diffeomorphism of M that fix an increasing
number of points. Throughout we work with configurations spaces with labels in a fibre
bundle over M .

1 Introduction

There has been much recent interest in configuration spaces of manifolds. In one direction,
the work on factorisation algebras and non-commutative Poincare duality by Lurie [Lur], see
also Francis [Fra], is based on the classical work on configuration spaces of May [May72], Segal
[Seg73], McDuff [McD75] and Salvatore [Sal01]. This has also ignited increased interest in the
Goodwillie-Weiss embedding calculus [GW99]. From this point of view, one is more interested
in configurations of embedded discs than points, and needs to understand the interaction with
the diffeomorphism group of the background space M . Our approach to configurations spaces
will address both these points.

In another direction, moduli spaces of manifolds and the scanning map have been central in
the work on the Mumford conjecture and analogues; see [MW07], [Gal11] and also [Til12] for
a survey. In this context, configuration spaces are moduli spaces of zero dimensional manifolds
and have provided much intuition. The work here was motivated by some basic question of
diffeomorphism equivariance that arose in this context.

Contents and results:

Let Ck(M ;X) denote the space of k unordered, distinct particles in a compact smooth manifold
M with labels in a pointed space X. For a closed submanifold M0 ⊂ M , let C(M,M0;X)
denote the space of configurations of particles in M which vanish in M0 or at the base-point of
X.

The goal of this paper is two-fold. First we want to revisit the foundations of the subject and pro-
vide a natural and equivaraint scanning map that relates the configuration spaces C(M,M0;X)
to mapping spaces or section spaces more generally. The study of these maps goes back to May
[May72] and Segal [Seg73] in the case when M = Rn, and to McDuff [McD75] and Bödigheimer
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[Böd87] for general manifolds. The diffeomorphism group of M acts naturally on both the
configuration spaces and the section spaces. However, the standard scanning maps, which in-
volve choosing a metric on M and are defined by collapsing ε-balls around the particles, do not
commute with these actions.

Our approach here is to replace a configuration by its space of tubular neighbourhoods. As the
space of tubular neighbourhoods is contractible this construction does not change the homotopy
type of Ck(M ;X) and, less obviously, also not of C(M,M0;X). This will be proved in section
2. In section 3 the scanning map on these enlarged configuration spaces is defined by simply
collapsing M onto the configuration of tubular neighbourhoods. This construction is equivariant
under the action of the diffeomorphism group; see Theorem 3.8.

Our second goal is to revisit the classical splitting theorems for function spaces going back to
Snaith [Sna74] whenM is a Euclidean space and generalised by Bödigheimer [Böd87] to arbitrary
manifolds. Using the above results we construct these splittings equivariantly under the action
of the diffeomorphism group; the main result in this direction is Theorem 4.8. In particular this
gives stable splittings of the corresponding homotopy orbit spaces, something that for actions
of compact Lie groups and a restricted class of manifolds was previously shown by Bödigheimer
and Madsen [BM88] by different methods that do not extend to the non-compact setting.

The key to the splitting theorem is the construction in section 4.3 of diffeomorphism equivariant
power set maps for configuration spaces. This uses the Barratt-Eccles [BE74a] model for the
free infinite loop space functor.

In the final section, for connected M with non-empty boundary, the splitting methods are
applied to show that the inclusion b : Ck(M ;X) → Ck+1(M ;X), which is well-known to be
stably split injective, is indeed equivariantly so. As an immediate consequence we prove that a
natural homomorphism

b̄ : Diff(M r k; ∂M)→ Diff(M r k + 1; ∂M)

of diffeomorphisms of M fixing a set of k points to those fixing a set of k + 1 points induces a
split injection in homology on classifying spaces; this is the content of Theorem 4.15.

Much of the literature restricts itself to configurations with labels in a constant space X. We
emphasise that more generally we consider here configuration spaces with twisted coefficients,
that is where X is replaced by a fibre bundle π over M and the label space may vary with the
points in M . On the one hand we will need this in the application we have in mind [Til] and on
the other hand it allows us to replace sections spaces with mapping spaces; see Example 4.10.

Future work and extensions:

In forthcoming work of the second author [Til], using the results established here, the map b̄
and generalisations thereof will be shown to also induce isomorphisms in homology in a range
growing with k.

In another direction, the methods of this paper can be extended to treat configurations of
submanifolds as considered by Palmer [Pal] and provide equivariant stable split injections for
the stable homology isomorphisms in that setting.
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2 Tubular configuration spaces and twisted labels

We define tubular configuration spaces and show that they are homotopic to the usual config-
uration spaces.

2.1 The definition of tubular configuration spaces

Let M be a smooth compact manifold. The configurations space of k ordered particles in M is
the subspace of the k-fold Cartesian product of M

C̃k(M) ..= {(m1, . . . ,mk) ∈Mk : mi 6= mj if i 6= j}.

Equivalently, C̃k(M) is the embedding space Emb(k,M), where k denotes the 0-manifold with
k points. The symmetric group Σk acts freely and the configuration space of k unordered
particles in M is the orbit space Ck(M). When k = 0 there is only one configuration, the empty
configuration, and C̃0(M) = C0(M) = ∗.

Let M0 ⊂M be a (possibly empty) compact submanifold. The configuration space of particles
in M modulo M0 is then defined as

C(M,M0) ..=

( ∞∐
k=0

Ck(M)

)/
∼

where (m1, . . . ,mk) ∼ (m1, . . . ,mk−1) if mk ∈ M0. We think of this relation as particles
vanishing in M0.

To define the tubular configuration spaces of particles in M we replace a configuration m =
(m1, . . . ,mk) by the space of tubular neighbourhoods of its particles considered as a 0-dimensional
submanifold of M .

Let W be a manifold without boundary containing M as a codimension zero submanifold. More
precisely, if M has empty boundary let W = M and otherwise let W = M ∪ (∂M × [0, 1)) be
M with an open collar attached. Similarly we define M+ as M+ = M = W when M has no
boundary and as M+ = M ∪(∂M× [0, 1/2)) otherwise. Such manifolds M+ and W are required
so that particles on the boundary of M admit tubular neighbourhoods.

Let P ⊂M be a neat submanifold, let ν be its normal bundle and identify P with the image of
the zero section in ν. By a tubular neighbourhood of P in M we mean an embedding f : ν →M
which restricts to the identity on the zero-section and for which the composition

ν ↪−→ ν ⊕ TP = Tν|P
df−→ TM |P −→ ν (id)

is the identity on ν. We call this last property (id). Denote the space of tubular neighbourhoods
of P by Tub(P ) and topologise it as a subspace of the embedding space Emb(ν,M) with the
C∞ topology.

For an ordered or unordered configuration m of M let Tub(m) denote the space of tubular
neighbourhoods of m considered as a 0-dimensional submanifold of M+. Define the tubular
configuration space of k ordered particles in M as the disjoint union

Ẽk(M) ..=
∐

m∈C̃k(M)

Tub(m)
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equipped with an appropriate topology which restricts to the ordinary C∞ topology on the fibres.
We defer a description of the topology to Section 2.2. We refer to a tubular neighbourhood
f ∈ Ẽk(M) as a tubular configuration and we often write it as a collection of its components
(f1, . . . , fk), with fi : TmiM → M+. The symmetric group on k points acts freely on Ẽk(M)
and we define the tubular configuration space of k unordered particles as the orbit space Ek(M).

Analogous to the ordinary configuration spaces, we define the tubular configuration space of
particles in M modulo M0 as

E(M,M0) ..=

( ∞∐
k=0

Ek(M)

)/
∼

where (f1, . . . , fk) ∼ (f1, . . . , fk−1) if fk(0) ∈M0. Components of a tubular configuration vanish
if their midpoint is in M0.

M0

M W rM

M+

Figure 2.1: The image of a tubular configuration of five particles on a punctured torus. The
underlying particles are marked as black dots.

Remark 2.1. As an alternative approach, consider configuration spaces with neighbourhoods of
each particle without an identification with the normal bundle. We think of this as configura-
tions of submanifolds diffeomorphic to a finite union of open disks with one marked point. Note
that for a configuration m of k particles in M , there are isomorphisms

Tub(m) ∼= WeakTub(m)
/⊕

i GLn(R)

and

Tub(m)
/⊕

i Diff(TmiM, id) ∼= WeakTub(m)
/⊕

i Diff(TmiM, 0)

where WeakTub(m) is the space of weak tubular neighbourhoods, that is the space of embed-
dings of the normal bundle of m into M+ which restrict to the identity on the zero section
but do not satisfy property (id), Diff(TmiM, 0) is the group of diffeomorphisms which fix 0
and Diff(TmiM, id) ⊂ Diff(TmiM, 0) are the diffeomorphisms whose derivatives at zero are the
identity. The second space is the space of embedded discs with given midpoints. We note that

Diff(TmiM, 0) ' GLn(R) and Diff(TmiM, id) ' ∗.

Hence, the space of embedded discs (with fixed midpoint) is homotopic to the space of tubular
neighbourhoods, in other words the two spaces above are homotopic.

2.2 The parc C∞ topology

We generalise the compact-open topology for spaces of partial maps with closed domain as
defined in [BB78] to a C∞ topology for spaces of smooth partial maps. This generalisation
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allows us to topologise tubular configuration spaces as subspaces of certain smooth partial
mapping spaces.

Let X and Y be topological spaces. A partial map f : X → Y is a map A → Y for some
subspace A ⊆ X. We call A the domain of f and denote it by D(f). A parc map or partial
map with closed domain is a partial map f such that D(f) is closed in X. Let Pc(X,Y ) denote
the set of parc maps X → Y . The parc mapping space is Pc(X,Y ) equipped with the parc
compact-open topology which has sub-base the sets

(K,U) ..= {f ∈ Pc(X,Y ) : f(K ∩ D(f)) ⊆ U}

for all compact sets K ⊆ X and open sets U ⊆ Y .

Similarly there is a paro mapping space Po(X,Y ) for partial maps with open domain [AAB80].
Po(X,Y ) is equipped with the paro compact-open topology with sub-base the sets

(K,U) ..= {f ∈ Po(X,Y ) : K ⊆ D(f), f(K) ⊆ U}.

Remark 2.2. Given a fixed closed (open) set A ∈ X, the topology on the subset of parc (paro)
maps X → Y which are defined precisely on A coincides with the ordinary compact-open
topology on the mapping space Map(A, Y ).

Let M and N be Cr manifolds with r <∞ and denote the set of partial Cr maps M → N with
closed domain by CrPc(M,N). We equip this set with a generalisation of the Cr topology as
follows. Let f ∈ CrPc(M,N) be a parc Cr map and let (φ,U) and (ψ, V ) be charts for M and
N respectively. Let K ⊆ U be a compact set such that f(K ∩ D(f)) ⊆ V and let 0 < ε ≤ ∞.
Define a parc sub-basic neighbourhood

N r(f ; (φ,U), (ψ, V ),K, ε)

to be the set of parc Cr maps g : M → N such that g(K ∩ D(g)) ⊆ V and

‖Dk(ψfφ−1)(x)−Dk(ψgφ−1)(x)‖ < ε

for all x ∈ φ(K) and k = 0, . . . , r. The set of all such neighbourhoods form a sub-base for the
parc Cr topology on CrPc(M,N). For C∞ manifolds M and N , C∞Pc(M,N) is the space of
parc C∞ maps equipped with the parc C∞ topology. This is simply the union of the topologies
induced by the inclusions C∞Pc(M,N) ↪→ CrPc(M,N) for r finite.

Remark 2.3. It follows immediately from the definition that the subspace of C∞Pc(M,N)
consisting of maps defined on a smooth closed submanifold A is the smooth mapping space
C∞(A,N) equipped with the ordinary C∞ topology.

Remark 2.4. The parc smooth mapping space is functorial in each argument. Let M , N and
Q be smooth manifolds, then smooth maps φ : N → Q and ψ : M → Q induce the following
continuous maps.

φ∗ : C∞Pc(M,N) −→ C∞Pc(M,Q)

f 7−→ φ ◦ f
ψ∗ : C∞Pc(M,N) −→ C∞Pc(Q,N)

f 7−→ f ◦ ψ|ψ−1(D(f))

2.3 The topology of tubular configuration spaces

Returning to configuration spaces, let M ⊂ M+ ⊂ W be as defined in section 2.1, and define
the tubular configuration space of k unordered particles in M as the subspace

Ek(M) ..= {f ∈ C∞Pc(TM,M+) : D(f) =
∐
i

TmiM and f ∈ Tub(m) for some m ∈ Ck(M)}.
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This agrees set-wise with the previous definition. Moreover, for any m ∈ Ck(M) the topology
on the subspace Tub(m) ⊂ Ek(M) is compatible with the ordinary C∞ topology by Remark
2.3.

Lemma 2.5. The projection p : Ek(M)→ Ck(M), f 7→ (f1(0), . . . , fk(0)) is continuous.

Proof. Let r : W → M be the retract collapsing the collar onto ∂M and let j : M ↪→ TM be
the zero section. Note that Ck(M) can be identified with the space of partial (smooth) identity
maps M → M with domain a finite subset of size k. Then p is the restriction of the induced
map

C∞Pc(TM,M+)
(r|M+ )∗−−−−−→ C∞Pc(TM,M)

j∗−→ C∞Pc(M,M)

to Ek(M), which is continuous by Remark 2.4.

Proposition 2.6. p : Ek(M)→ Ck(M) is a fibre bundle.

Proof. Let m = (m1, . . . ,mk) be a configuration in Ck(M). We construct a local trivialisation
for p around m. Let h : TM |m →M+ be a tubular neighbourhood of m and let DM and D̊M
be the closed and open disk subbundles of TM for some fixed metric. Then the restriction of h
to DM |m is a closed tubular neighbourhood. Choose a continuous family of diffeomorphisms
of h(DM |m) fixing the boundary

τ : Γ(D̊M |m) −→ Diff(h(DM |m), ∂)

parameterised by the space of sections of D̊M |m and such that for each section s ∈ Γ(D̊M |m),
τs ◦ h ◦ s = idm where τs ..= τ(s). We assume the diffeomorphisms are extended to M+ and W
by fixing W r h(DM |m).

There is a homeomorphism

φ : Γ(D̊M |m) −→

(∏
i

h(DmiM)

)/
Σk =.. V ⊆ Ck(M)

s 7−→ (h ◦ s(m1), . . . , h ◦ s(mk))

whose image is an open neighbourhood of m in Ck(M). Intuitively, h defines an open ball
around each particle in m and V is the set of all configurations with precisely one particle in
each open ball. For each configuration n ∈ V , σn ..= τ ◦ φ−1(n) is the diffeomorphism of W
which moves the particles in n onto the particles in m.

Local trivialisations over V are then given by

Ek(M)|V 7−→ V × Tub(m)

Tub(n) 3 f 7−→
(
n, σn ◦ f ◦ (dσn)−1

)
.

Here (dσn)−1 maps the normal bundle of m to the normal bundle of n, f maps this to a
neighbourhood of n and σn maps this neighbourhood to a neighbourhood of m, thus the
composition is indeed a tubular neighbourhood of m.

For each k ≥ 0 there is a covering map q : C̃k(M)→ Ck(M). We define the tubular configuration
space of k ordered particles in M as the pullback Ẽk(M) ..= q∗Ek(M) and let p̃ : Ẽk(M) →
C̃k(M) be the corresponding fibre bundle.
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The projection p has a right inverse σ. To define σ choose a Riemannian metric on W . For
a configuration m let ε1 be the smallest distance in W between any two of its particles and
let ε2 be the greatest value such that for each i, expmi : Bε2(TmiM, 0) → Bε2(M+,mi) is a

diffeomorphism. Let εm = min{ε1, ε2}, then m 7→ εm is a continuous map C̃k(M) → R>0.

For each i define fi : TmiM → M+ by v 7→ expmi

(
2εmv
π|v| arctan |v|

)
, then (m1, . . . ,mk) 7→

(f1, . . . , fk) is a section σ̃ : C̃k(M) → Ẽk(M). Moreover, this section is Σk-equivariant and
descends to a section σ : Ck(M)→ Ek(M).

Corollary 2.7. The projections p and p̃ are homotopy equivalences with homotopy inverses
given by the global sections σ and σ̃.

Proof. We have seen that the projections p and p̃ give tubular configuration spaces the structure
of fibre bundles. The fibre over any configuration m is the space of tubular neighbourhoods
Tub(m). The space of tubular neighbourhoods of any compact submanifold is contractible, see
for example [God08]. The contractions of each fibre determine homotopies σ ◦ p ∼ idEk(M) and
σ̃ ◦ p̃ ∼ id

Ẽk(M)
.

2.4 Twisted labels and homotopy equivalences

It is common to add local data to configurations in the form of labels in a parameter space. In
this paper we consider an extension of this notion which allows the parameter space to vary as
the fibre of a fibre bundle over the underlying manifold. We say the configurations have twisted
labels.

Let M be a smooth compact manifold and let π : Y →M be a fibre bundle and a zero section
o : M → Y . Furthermore, assume that for each m ∈M , the fibre Ym over m is well-pointed with
base-point o(m). We define the configuration space of k ordered particles in M with twisted
labels in π as

C̃k(M ;π) ..= {(m, x) ∈ C̃k(M)× Pc(M,Y ) : D(x) = m, x(mi) ∈ Ymi}

or equivalently C̃k(M ;π) ..= {(m;x) ∈ C̃(M)×Y k : π(xk) = mk}. We prefer here the definition
in terms of partial maps as it motivates the definition of tubular configuration spaces with
twisted labels below.

Example 2.8. An important example is when Y is the trivial bundle M ×X where X is well-
pointed with base-point ∗ and the zero section is o(m) = (m, ∗). In this case we write C̃k(M ;X)
for the configuration space with labels in X.

As in the unlabelled case, we define Ck(M ;π), the configuration space of k unordered particles
with twisted labels in π, as the orbit space under the obvious Σk-action and C0(M ;π) = ∗. Now
let M0 ⊂M be a compact submanifold, then the configuration space of particles in M modulo
M0 with twisted labels in π is

C(M,M0;π) ..=

( ∞∐
k=0

Ck(M ;π)

)/
∼

where (m1, . . . ,mk;x1, . . . , xk) ∼ (m1, . . . ,mk−1;x1, . . . , xk−1) if mk ∈ M0 or xk = o|mk . Here
xi denotes the ith component of x, i.e. xi = x|mi .
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Let M ⊂ M+ ⊂ W be as in section 2.1 and let (Y, π, o) be extended over W as the pullback
along the retract r : W →M which maps the collar to ∂M . The tubular configuration space of
k ordered particles in M with twisted labels in π is

Ẽk(M ;π) ..= {(f, s) ∈ Ẽk(M)× Po(M+, Y ) : D(s) = im(f), πs = idim(f)}

and the unordered tubular configuration space is the orbit space Ek(M ;π).

The following propositions are proved using similar techniques as in the proof of Proposition
2.6 and Corollary 2.7.

Proposition 2.9. The projection q : Ek(M ;π) → Ek(M), (f ; s) 7→ f is a fibre bundle with
fibre q−1(f) = Γ(Y |im(f)), the space of sections of Y over the image of f .

Proposition 2.10. The projection p : Ek(M ;π) → Ck(M ;π), (f ; s) 7→ (p(f); s|p(f)) is a fibre
bundle with contractible fibres.

Analogous to the ordinary configuration spaces, we define the tubular configurations space of
particles in M modulo M0 with twisted labels in Y to be

E(M,M0;π) ..=

( ∞∐
k=0

Ek(M ;π)

)/
≈

where (f1, . . . , fk; s1, . . . , sk) ≈ (f1, . . . , fk−1; s1, . . . , sk−1) if fk(0) ∈ M0 or sk = o|im(fk). We
emphasise that we require the entire section sk to agree with the zero section rather than just
sk(mk) = o(mk). Our choice of definition here is motivated by the construction of the scanning
map in the next section. Note that whereas a particle in a configuration vanishes if its label
agrees with the zero section, a component of a tubular configuration vanishes only if the entire
section over the image of that component agrees with the zero section. A tubular configuration
does not necessarily vanish when the underlying particle in the configuration vanishes. This
fact complicates the proof of the next result.

Proposition 2.11. There is a well defined weak homotopy equivalence p : E(M,M0;π) →
C(M,M0;π) induced by the projections p : Ek(M ;π)→ Ck(M ;π).

Proof. Define p : E(M,M0;π) → C(M,M0;π) by p[(f ; s)] ..= [p(f ; s)] for any representative of
the class. This is well defined since if a component of a configuration in E(M,M0;π) vanishes,
the underlying particle in C(M,M0;π) does. The number of particles in configurations and
tubular configurations induce filtrations

∗ = C0(M,M0;π) ⊂ C1(M,M0;π) ⊂ . . . ⊂ C(M,M0;π), Cn(M,M0;π) ..=

(
n∐
k=0

Ck(M ;π)

)/
∼

and

∗ = E0(M,M0;π) ⊂ E1(M,M0;π) ⊂ . . . ⊂ E(M,M0;π), En(M,M0;π) ..=

(
n∐
k=0

Ek(M ;π)

)/
≈

and p respects the filtrations. Topologically the configuration spaces C(M,M0;π) and E(M,M0;π)
are the colimits of the filtration sequences. For each k define the subspaces of configurations
in Ck(M ;π) and Ek(M ;π) in which at least one particle or component vanishes under the
equivalence relation ∼ or ≈ respectively. More precisely, define

BCk(M,M0;π) ..= {(m,x) ∈ Ck(M ;π) : mk ∈M0 or xk = o|mk}
and

BEk(M,M0;π) ..= {(f, s) ∈ Ek(M ;π) : fk(0) ∈M0 or sk = o|im(fk)}.
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For each k ≥ 1 we have a commutative diagram

Ek(M ;π)

��

// Ck(M ;π)

��

BEk(M,M0;π)

55jjjjj

��

// BCk(M,M0;π)

55jjjjj

��

Ek(M,M0;π) // Ck(M,M0;π)

Ek−1(M,M0;π)

55jjjj
// Ck−1(M,M0;π)

55jjjj

in which all the maps from left to right are induced by p, the vertical maps send configurations
to their equivalence classes, and the maps from front to back are inclusions. The upper maps
from front to back are cofibrations by our condition on the section o, and the left and right
faces are homotopy pushout squares. Thus if p induces weak homotopy equivalences on the two
upper maps and the front map, it also will induce a weak homotopy equivalence on the lower
back map.

By the previous proposition the projections p : Ek(M ;π) → Ck(M ;π) are weak homotopy
equivalences for each k. Note that E0(M,M0;π) = ∗ = C0(M,M0;π). Thus, if p induces
weak homotopy equivalences BEk(M,M0;π) → BCk(M,M0;π) for each k we can proceed by
induction on k to show that Ek(M,M0;π) → Ck(M,M0;π) is a weak homotopy equivalence
and hence obtain the result.

To see that BEk(M,M0;π)→ BCk(M,M0;π) is a homotopy equivalence, define subspaces

Bo
Ck

..= {(m;x) : xk = o|mk}, B
M0
Ck

..= {(m;x) : mk ∈M0} ⊂ BCk(M,M0;π)

and

Bo
Ek

..= {(f ; s) : sk = o|im(f)}, BM0
Ek

..= {(f ; s) : fk(0) ∈M0} ⊂ BEk(M,M0;π).

There is a commutative diagram

Bo
Ek

��

// Bo
Ck

��

Bo
Ek
∩BM0

Ek

66lllll

��

// Bo
Ck
∩BM0

Ck

66lllll

��

BEk(M,M0;π) // BCk(M,M0;π)

BM0
Ek

66llllll
// BM0

Ck

66llllll

where the maps from left to right are induced by p and the left and right faces are homotopy
pushout squares. Note that Bo

Ek
⊂ Ek(M ;π)|BoCk are subbundles of Ek(M ;π) → Ek(M) with

fibres Γ(X|im(f)rim(fk)) and {s ∈ Γ(X|im(f)) : sk|fk(0) = o|fk(0)} respectively over f . The fibres
are homotopy equivalent so Bo

Ek
→ Bo

Ck
is a weak homotopy equivalence. The front maps from

left to right are weak homotopy equivalences since BM0
Ek

= Ek(M ;π)|
B
M0
Ck

and Bo
Ek
∩ BM0

Ek
=

Bo
Ek
|
B
M0
Ck

as bundles over Ck(M ;π). So BEk(M,M0;π) → BCk(M,M0;π) is a weak homotopy

equivalence.

Remark 2.12. If Y has the homotopy type of a CW-complex then the spaces Ck(M ;π) and
C(M,M0;π), and their filtration subspaces and quotients have the homotopy types of CW-
complexes [McD75] and hence the same holds for tubular configuration spaces. The map in the
previous proposition is thus in fact a homotopy equivalence.
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3 The scanning map

We define the scanning map for tubular configuration spaces, show that it induces a homotopy
equivalence under the usual assumptions and that it is equivariant with respect to the group of
those diffeomorphisms of M which can be lifted to an isomorphism of the bundle π : Y →M .

3.1 Definition and homotopy equivalence

LetM0 ⊂M ⊂M+ ⊂W and (Y, π, o) be as defined in the previous section, and let n = dim(M).
Denote by ṪW the fibrewise one point compactification of the tangent bundle of W and let
ṪzW denote the fibre of ṪW over a point z ∈ W . Let τ̇π ..= ṪW ∧W Y be the fibrewise smash
product of ṪW with the bundle Y , where the base-point in each fibre of Y is determined by
the zero-section o. Then, if X denotes a typical fibre of π, τ̇π is a ΣnX-bundle over W with a
canonical section ∗ : W → τ̇π. Let Γ(W rM0,W rM ;π) denote the space of sections of τ̇π
which are defined outside of M0 and which agree with ∗ outside of M (and hence on ∂M). In
this section we define a scanning map γ : E(M,M0;π)→ Γ(W rM0,W rM ;π).

We begin by constructing a sequence of maps γk : Ek(M ;π) → Γ(W rM0,W rM ;π). In-
tuitively, our scanning map will send a tubular configuration (f ; s) ∈ Ek(M ;π) to a section
defined by s on the Y component and by a modification of f−1 over W on the ṪW component,
sending points outside of im(f) to the compactification points in the appropriate fibres.

Lemma 3.1. [Lee03] Let V be a finite dimensional vector space. Given a vector v ∈ V , there
is a canonical linear isomorphism V → TvV . Moreover, for any finite dimensional vector space
U and any linear map L : V → U the following diagram commutes.

V
∼= //

L

��

TvV

dvL
��

W ∼=
// TLvW

For any (f, s) ∈ Ek(M ;π) and z ∈ im(f), f−1(z) ∈ TmiM for some i. For each z and each f let
φf,z : TmiM → Tf−1(z)(TmiM) be the canonical isomorphism. φf,z varies continuously in f and
z. Let (f, s) ∈ Ek(M ;π). Having removed any components (fi, si) with mi ∈ M0 if necessary,
we define a section of τ̇π by

z 7→

{(
df−1(z)f ◦ φf,z ◦ f−1(z), s(z)

)
if z ∈ im(f) ∩ (M+ rM0)

∗z otherwise.

Although the above construction gives a well-defined map, it is not continuous. The problem
is that the contribution of fi in the section of τ̇π suddenly vanishes as mi reaches M0. We
introduce the following modification of the above map for components (fi, si) with mi in a
collar neighbourhood of ∂M0 in M which makes sure that for a fixed z ∈ im(fi) its image under
the section goes to the point at infinity in ṪzW as mi gets close to the boundary of M0 in M .
To this end we fix a collar and choose a metric on W such that the chosen collar has width
1. Let δ(mi) be the distance of mi to M0. We now multiply the above formula by exp( 1

δ(mi)
)

when z ∈ im(fi) and mi is in the collar. Note that we only use the metric on the collar. The
resulting map γ+ is now continuous.
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Note that the target of γ+ is a section that may not vanish outside M as our tubular discs may
have image in the larger M+. Let ρ : Γ(W rM0,W rM+;π)→ Γ(W rM0,W rM ;π) be the
homotopy equivalence induced by a diffeomorphism of W that maps ∂M ∪ [0, 1/2) into a collar
of ∂M in M and leaves M away from the collar pointwise fixed. A homotopy inverse is given
by the inclusion Γ(W rM0,W rM ;π)→ Γ(W rM0,W rM+;π) Define

γ := ρ ◦ γ+ : E(M,M0;π)→ Γ(W rM0,W rM ;π).

Remark 3.2. The composition

C(M,M0;π)
σ−−→ E(M,M0;π)

γ−−→ Γ(W rM0,W rM ;π)

is homotopic to the scanning map of McDuff [McD75] when π : Y → M is a trivial X-bundle.
If we compose with a reflection (t1, . . . , tn;x) 7→ (−t1, . . . ,−tn−1,−tn;x) in each fibre of τ̇π it is
homotopic to the scanning map of Bödigheimer and Madsen [BM88] when π is trivial and the
extension due to Hesselholt [Hes92] for arbitrary π.

Theorem 3.3. The scanning map γ : E(M,M0;π)→ Γ(WrM0,WrM ;π) is a weak homotopy
equivalence if the pair (M,M0) or the typical fibre X of π is 0-connected. Moreover, if X has
the homotopy type of a CW-complex then it is a homotopy equivalence.

Proof. By Remark 3.2 we have a homotopy commutative diagram

E(M,M0;π)
γ

// Γ(W rM0,W rM ;π)

C(M,M0;π)

'

OO

'

55jjjjjjjjjjjjjjj

factoring the ordinary scanning map, which is a weak homotopy equivalence; see [Hes92] for
the case with twisted coefficients. By proposition 2.11, the left hand map is a weak homotopy
equivalence. Hence, γ is one too. If Y has the homotopy type of CW-complex so do all
the three spaces in the diagram and hence the weak homotopy equivalences are homotopy
equivalences.

3.2 Equivariance

Let Diff(M,∂M) be the group of diffeomorphisms of M which fix a collar of the boundary
pointwise. There is an isomorphism Diff(M,∂M)→ Diff(W,WrM) extending diffeomorphisms
by the identity on W rM . We will not distinguish between these groups and we understand
the action of a diffeomorphism in Diff(M,∂M) on W to mean the action of its extension over
W rM .

Now we define actions on configuration spaces as follows. Let φ ∈ Diff(M,∂M), then φ ·
(m1, . . . ,mk) ..= (φ(m1), . . . , φ(mk)) for (m1, . . . ,mk) ∈ C̃k(M) or Ck(M) and φ·f ..= φ◦f ◦dφ−1

for f ∈ Ẽk(M) or Ek(M). With these actions the projections p and p̃ are Diff(M,∂M)-
equivariant non-equivariant homotopy equivalences.

This action of the diffeomorphism group extends to configuration spaces with labels when
Y = M × X is a trivial bundle. However, in general diffeomorphisms of M do not lift to
automorphisms of the labelling bundle Y . Instead we need to consider the automorphism group
of Y and the induced diffeomorphisms on the base space M .

11



Let π1 : Y1 →M and π2 : Y2 →M be fibre bundles over M . We consider bundle isomorphisms
α : Y1 → Y2 that induce diffeomorphisms αM on the base and denote isomorphic bundles by
Y1
∼= Y2. If the isomorphism induces the identity on the base we call it an equivalence and

denote equivalent bundles by Y1 ≡ Y2.

Lemma 3.4. Let Aut(π) denote the group of automorphisms of π : Y → M that restrict to
diffeomorphisms of M . Then the homomorphism Aut(π)→ Diff(M), α 7→ αM has image

Diff(M ;π) ..= {β ∈ Diff(M) : (βM )∗Y ≡ Y }.

Proof. Let β ∈ Diff(M ;π) and β̃ : β∗Y → Y be the map completing the pullback square. Let
f : Y → β∗Y be a bundle equivalence, then β̃ ◦ f is an automorphism of Y whose image under

ρ is β. Conversely let α ∈ Aut(π), and let (̃αM ) : (αM )∗Y → Y be the map completing the

pullback square, then α−1 ◦ (̃αM ) : (αM )∗Y → Y is an equivalence.

Remark 3.5. In general, Diff(M ;π) ( Diff(M). For example, consider the Hopf bundle over
S2 and the antipodal map on the base. The Chern class of the Hopf bundle is +1 but the
Chern class of the pullback is −1 so they cannot be equivalent. However, when Y is trivial or
some other natural bundle such as a tangent bundle, Diff(M ;π) = Diff(M) and there is a lift
Diff(M) → Aut(π). For any bundle, Diff(M ;π) contains Diff0(M), the connected component
of the identity, since homotopic maps induce equivalent pullbacks.

Let Auto(M,M0 ∪ ∂M ;π) ⊂ Aut(π) denote the subgroup of bundle automorphisms of Y which
preserve the zero section and restrict to diffeomorphisms in Diff(M,M0∪∂M). Here we assume
as is standard that the diffeomorphisms fix a collar in M of M0 ∪ ∂M . Let α ∈ Auto(M,M0 ∪
∂M ;π), then we define actions as follows:

• α · (m;x) ..= (αM (m);α ◦ x ◦ α−1
M ) for (m;x) ∈ Ck(M ;π)

• α · (f ; s) ..= (αM ◦ f ◦ dα−1
M ;α ◦ s ◦ α−1

M ) for (f ; s) ∈ Ek(M ;π)

• α · σ ..= (dαM ∧W α) ◦ σ ◦ α−1
M for σ ∈ Γ(W rM0,W rM+;π).

The action on an equivalence class in C(M,M0;π) or E(M,M0;π) is given by the equivalence
class of the image of any representative under the action. This is well-defined as α preserves
the zero section.

Proposition 3.6. The projection p : E(M,M0;π) → C(M,M0;π) is Auto(M,M0 ∪ ∂M ;π)-
equivariant.

Proof. It follows immediately from the definitions that the projections Ek(M ;π) → Ck(M ;π)
are equivariant. We obtain the result by noting that the actions are well behaved with respect
to equivalence classes.

Remark 3.7. Although the projection is equivariant, the homotopy inverse σ : C(M,M0;π) →
E(M,M0;π) defined by the exponential map and open ε-disks around each particle depends on
choosing a metric and is not preserved under diffeomorphism.

Theorem 3.8. The scanning map γ : E(M,M0;π)→ Γ(W rM0,W rM ;π) is Auto(M,M0 ∪
∂M ;π)-equivariant.

Proof. Consider the scanning map γ+
k : Ek(M ;π) → Γ(W rM0,W rM+;π) for some k ≥ 0.

Choose a point z ∈ W r M0, an automorphism α ∈ Auto(M,M0 ∪ ∂M ;π) and a tubular
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configuration (f ; s) with underlying configuration (m;x). We want to show

(α · γ+
k (f ; s))(z) = γ+

k (α · (f ; s))(z).

Suppose α−1
M (z) ∈ im(fi) for some i. By the definition of the action on Γ(W rM0,W rM+;π)

we have

(α · γ+
k (f ; s))(z) =

(
dα−1

M (z)αM ◦ df−1
i ◦α

−1
M (z)fi ◦ φf,α−1

M (z) ◦ f
−1
i ◦ α

−1
M (z), α ◦ s ◦ α−1

M (z)
)
.

We calculate γ+
k (α · (f ; s))(z) componentwise:

(i) (α · fi)−1 = dmiαM ◦ f−1
i ◦ α

−1
M

(ii) by Lemma 3.1 there is a commutative diagram

TmiM
φ
f,α−1

M
(z)

//

dmiαM
��

Tf−1
i ◦α

−1
M (z)TmiM

d
f−1
i
◦α−1
M

(z)
dmiαM

��

TαM (mi)M φα·f,z
// T(α·fi)−1(z)TαM (mi)M

so we have φα·f,z = df−1
i ◦α

−1
M (z)dmiαM ◦ φf,α−1

M (z) ◦ (dmiαM )−1

(iii) d(α·fi)−1(z)(α · fi) = dα−1
M (z)αM ◦ df−1

i ◦α
−1
M (z)fi ◦

(
df−1
i ◦α

−1
M (z)dmiαM

)−1
.

Putting these together we have

γk(α · (f ; s))(z) =
(
dα−1

M (z)αM ◦ df−1
i ◦α

−1
M (z)fi ◦ φf,α−1

M (z) ◦ f
−1
i ◦ α

−1
M (z), α ◦ s ◦ α−1

M (z)
)
.

In our computations above we have implicitly assumed that none of the factors of (f ; s) have
midpoint in the collar of ∂M0 in M . We leave it to the reader to check that the multiplicative
factor exp( 1

δ(mi)
) does not interfere with the equivariance argument as our diffeomorphisms fix

the collar by assumption.

The homotopy Γ(W rM0,W rM+;π) → Γ(W rM0,W rM ;π) is invariant under α, again
since automorphisms in Auto(M,M0∪∂M ;π) fix the chosen collar. To complete the proof recall
that the scanning map γ is defined by ρ ◦ γ+

k for any representative of a class and the actions
respect the equivalence relation.

Combining Theorems 3.8 and 3.3 gives the following corollary.

Corollary 3.9. Let (M,M0) or a typical fibre X of π be 0-connected. If a topological group
G acts on M and π via a homomorphism G → Auto(M,M0 ∪ ∂M ;π), then there are weak
homotopy equivalences of the reduced Borel constructions

EGnG C(M,M0;π) ' EGnG E(M,M0;π) ' EGnG Γ(W rM0,W rM ;π)

which are homotopy equivalences if Y has the homotopy type of a CW-complex.

Remark 3.10. Let Y = M ×X be a trivial bundle and let G be a compact Lie group acting on
M through isometries and on X fixing the base-point. Then the ordinary scanning map

γ ◦ σ : C(M,M0;X) −→ Γ(W rM0,W rM ;X)

is G-equivariant.
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4 Stable splittings

In this section we construct Snaith type splittings via diffeomorphism equivariant maps. As
a result we generalise and strengthen the results of Bödigheimer and Madsen [BM88]. As an
application we also derive an equivariant stable split injection for configuration spaces and
diffeomorphisms of manifolds with marked points. This generalises some results in [BT01].

Constructions and assumptions: Let M0 ⊂ M ⊂ M+ ⊂ W and π : Y → X be as before. For
each k ≥ 1 let Ck = Ck(M,M0;π) be the filtrations of C = C(M,M0;π). For each k ≥ 1 let
Dk = Dk(M,M0;π) ..= Ck/Ck−1 be the filtration quotient and let V ..=

∨
i≥1D

i be the wedge

sum with kth filtration V k ..=
∨k
i=1D

i.

Throughout subsections 4.1-4.4 we will assume that (M,M0) or the typical fibre X of π is 0-
connected. Then also C,Ck, Dk, V, V k are all path connected as well. We also note that if X
has the homotopy type of a CW-complex then so do all these spaces.

Throughout this section we let G be a topological group which acts on M and π via a homo-
morphism G → Auto(M,M0 ∪ ∂M ;π). We will suppress this homomorphism in our notation.
Note that the G action on C induces an action on Ck, Dk and hence on V k.

4.1 Equivariant splittings in homology

Before we construct equivariant stable splittings for mapping spaces we prove the following
weaker statement in homology in virtue of the simplicity of its proof.

Theorem 4.1. There exist a π0G-equivariant isomorphism

H̃∗(C(M,M0;π))
∼=−−→
⊕
k≥1

H̃∗(D
k).

Proof. Given a pointed space A we denote the infinite symmetric product of A by SP(A).
Elements of SP(A) are finite formal sums

∑
kiai where ai ∈ A and ki ∈ N for each i with

the one relation that makes the base point the zero of the monoid, see [DT58]. Let ξα be a
configuration in C and write it as a formal sum ξα =

∑
i∈αmixi where α is a finite set. Given

a subset β ⊆ α of size k there is a subconfiguration ξβ ..=
∑

i∈βmixi ∈ Ck. Let ξ̄β denote its

image under the composition Ck → Dk ↪→ V . Define a power set map

σ : C −→ SP(V )

ξα 7−→
∑
β⊆α

ξβ

and extend it to a map σ : SP(C)→ SP(V ) by
∑
kαξα 7→

∑
kασ(ξα). This is a pointed G-map

that respects the filtrations and restricts to a pointed G-map SP(Ck)→ SP(V k).

The infinite symmetric product functor sends cofibrations to quasifibrations so for each k ≥ 1
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we have a commutative diagram

SP(Ck−1)

��

σ // SP(V k−1)

��

SP(Ck)

��

σ // SP(V k)

��

SP(Ck
/
Ck−1)

σ=id // SP(V k
/
V k−1)

in which the vertical sequences are quasifibrations and the lower horizontal map is the identity
SP(Dk)→ SP(Dk). Starting with C1 = V 1 we proceed by induction on k to see that σ induces
isomorphisms

π∗ SP(C(M,M0;π))
∼=−−→ π∗ SP(

∨
k≥1

Dk).

By the Dold-Thom theorem [DT58] this is precisely the homology isomorphism we require. To
finish the proof note that the connected component of the identity G0 ⊂ G acts trivially on
homology so the isomorphism is equivariant under the actions of π0G = G/G0.

Combining this with the results in section 3 we have proved the following corollary.

Corollary 4.2. There exists a π0G-equivariant isomorphism

H̃∗(Γ(W rM0,W rM ;π))
∼=−−→
⊕
k≥1

H̃∗(D
k).

The above proof serves as a model for the proofs of the stronger theorems in the following
sections. The main difficulty in each case is to construct a suitable G-equivariant power set
map.

4.2 Stable splittings of reduced Borel constructions

Bödigheimer and Madsen’s power set map for Borel constructions in [BM88] relies crucially
on the fact that the groups they consider are compact of Lie type. In particular they use
that one can embed the configuration space C(M) G-equivariantly into a finite dimensional
G-representation. Instead we use here suitably chosen models for EG which allow us to define
the power map on Borel constructions for any G acting on M smoothly and on π. This provides
a geometric model of the power set map.

Theorem 4.3. There is a weak homotopy equivalence of suspension spectra

Σ∞(EGnG C(M,M0;π)) −→ Σ∞
∨
k≥1

EGnG D
k.

Proof. As a consequence of Whitney’s embedding theorem, the embedding space Emb(M ;R∞)
is contractible. It admits a free Diff(M)-action. Choose a model for EG and replace it with
EG × Emb(M ;R∞) equipped with the diagonal action where g · h ..= h ◦ (g−1) for g ∈ G and
an embedding h : M → R∞. This is again a model for EG and we denote elements of this EG
by pairs (u, h).
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Given an embedding h : M → R∞ we define an associated embedding ĥ :
∐
Ck(M) → R∞ as

follows. For each k ≥ 1 and any N , Ck(RN ) is a finite dimensional, smooth manifold. Thus
there is an embedding Ck(RN ) ↪→ RLN for some LN . Considering Ck(RN ) as a submanifold
of Ck(RN+1) we can extend this embedding to an embedding of Ck(RN+1) ↪→ RLN+1 for some
LN+1 ≥ LN . Proceeding like this, in the limit we will have constructed an embedding

µk : Ck(R∞) ↪→ R∞.

Choosing an injection
∐
k≥1 R∞ ↪→ R∞ we can construct from µk an injection

µ :
∐
k≥1

Ck(R∞) ↪→ R∞.

Given now any embedding h : M ↪→ R∞, the embedding ĥ is defined as the composition

ĥ :
∐
k

Ck(M)
Ckh−−−→

∐
k

Ck(R∞)
µ−−→ R∞.

The action of G on M cannot be extended to an action on R∞, and in particular ĥ cannot be
made G-equivariant. Nevertheless, the construction is G-equivariant in the sense that

g.ĥ = ĥ ◦ g−1 = ĥ ◦ g−1 = ĝ.h.

We can now define the power-set map in this setting. Choose a configuration ξα =
∑

i∈αmixi ∈
C and define subconfigurations ξβ ∈ Ck and ξ̄β ∈ V as in the previous section. Let mβ

..=∑
i∈βmi ∈ Ck(M) be the associated unlabelled subconfiguration and define

σ : EGnG C(M,M0;π) −→ C(R∞;EGnG V )

(u, h, ξα) 7−→
∑
β⊆α

ĥ(mβ)(u, h, ξ̄β)

where the target is the configuration space of unordered particles in R∞ with labels in the trivial
EG nG V -bundle. The formula for σ gives a well defined map EG × C → C(R∞;EG × V ).
To see that it is well defined on the half smash product note that the base-point in C is
the empty configuration ξ∅ which has no subconfigurations so σ maps (u, h, ξ∅) to the empty
configuration in the target for any (u, h) ∈ EG. To check that σ is G-equivariant recall that
g · ξα =

∑
g(mi)

(
g ◦ xi ◦ g−1

)
. The G-action on the target is trivial on R∞ and given by the

diagonal action on the labels. Hence,

σ(g · (u, h, ξα)) =
∑
β⊆α

ĥ ◦ g−1(
∑
i∈β

g(mi))
(
g · u, h ◦ g−1, g · ξβ

)
g · σ(u, h, ξα) =

∑
β⊆α

ĥ(mβ)(g · u, h ◦ g−1, g · ξ̄β)

By definition g · ξ̄β = g · ξβ and

ĥ ◦ g−1(
∑
i∈β

g(mi)) = µ(
∑
i∈β

h ◦ g−1 ◦ g(mi)) = µ(
∑
i∈β

h(mi)) = ĥ(mβ).

So σ is well defined.
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Composing the power set map with the scanning map yields the map

EGnG C
σ−−→ C(R∞;EGnG V ) −→ Ω∞Σ∞(EGnG V )

which respects the filtrations of C and V . The cofibration sequences of the filtrations of C and
V induce fibration sequences of suspension spectra which fit into commutative diagrams

Σ∞
(
EGnG C

k−1
)

��

p
// Σ∞

(
EGn V k−1

)
��

Σ∞
(
EGnG C

k
)

��

p
// Σ∞

(
EGn V k

)
��

Σ∞
(
EGnG C

k
/
Ck−1

) p'id
// Σ∞

(
EGn V k

/
V k−1

)
for each k ≥ 1 and where p is the adjoint of the composition above. The lower horizon-
tal map is homotopic to the identity since it is the adjoint of the inclusion EG nG Dk ↪→
Ω∞Σ∞

(
EGnG D

k
)
. Starting with C1 = V 1 we proceed by induction on k to obtain a weak

homotopy equivalence of suspension spectra and the result follows from the observation that
EGnG

∨
k≥1D

k =
∨
k≥1EGnG D

k.

4.3 Equivariant stable splittings

The purpose of this section is to construct a G-equivariant power-set map which induces stable
G-equivariant splittings for configuration spaces. It will be completely natural and avoid having
to choose an embedding µ as in the proof of Theorem 4.3. It also gives a stronger result.

While the stable splitting in the previous section made use of the configuration space C(R∞;A)
as a model for the free infinite loop space Q(A) ..= lim

−−→
ΩnΣnA, here we will make use of the

Γ+-construction of Barratt and Eccles. We will also need to replace the Σk-orbits of C̃k(M ;π)
by the homotopy Σk-orbits. Recall the following constructions from [BE74a].

For a discrete group H, let W.H denote its homogeneous bar construction and let EH ..= |W.H|
be its geometric realisation. Group homomorphisms H → K induce continuous maps EH →
EK, and in particular the inclusion Σk−1 ↪→ Σk induces an inclusion map EΣk−1 ↪→ EΣk with
a right inverse induced by the reduction map R : Σk → Σk−1 as defined in [BE74a]. Given a
well-pointed space A, the Γ+ construction on A is defined as

Γ+(A) ..=

∐
k≥0

EΣk ×Σk A
k

/ ∼

where (w; a1, . . . , ak) ∼ (R(w); a1, . . . , ak−1) if ak = ∗. Γ+ is an endofunctor on the category
of well-pointed topological spaces. For any space A there is an inclusion map ιA : A ↪→ Γ+(A)
identifying A with Σ1 ×Σ1 A ⊂ Γ+(A) and a structure map hA : Γ+Γ+(A) → Γ+(A) making
the triple (Γ+, ι, h) into a monad. The spaces Γ+(A) are the free Γ+-algebras.

We define the Borel configuration space of k unordered particles in M with twisted labels in π
as

Ck(M ;π) ..= EΣk ×Σk C̃k(M ;π).
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The Borel configuration space with particles vanishing in M0 is then

C (M,M0;π) ..=

∐
k≥0

Ck(M ;π)

/ ∼

where (w;m1, . . . ,mk;x1, . . . , xk) ∼ (R(w);m1, . . . ,mk−1;x1, . . . , xk−1) if mk ∈ M0 or xk =
o|mk . The Borel configuration spaces admit filtrations C k ..=

∐k
i=0 Ck

/
∼ analogous to the ordi-

nary configuration spaces. We make use of the filtrations quotients Dk ..= C k
/
C k−1. Consider

the sequence of spaces D̃k = C̃k(M ;π)
/
≡ where (m1, . . . ,mk;x1, . . . , xk) ≡ ∗ if mi ∈ M0 or

xi = o|mi for some i. These spaces are the filtration quotients of the ordered configuration space
with vanishing particles. The filtration quotients of the Borel configuration spaces can then be
identified as Dk = EΣk nΣk D̃

k.

Proposition 4.4. The projection P : C (M,M0;π) → C(M,M0;π) and the restriction to the
filtration quotients P : Dk → Dk are weak homotopy equivalences.

Proof. The projection P : EΣk × C̃k(M ;π)→ C̃k(M ;π) is a Σk-equivariant homotopy equiva-
lence. As Σk acts freely on the source and target, P induces a homotopy equivalence on orbit
spaces Ck(M ;π)

'−→ Ck(M ;π). Together they give a well defined map P : C (M,M0;π) →
C(M,M0;π) of filtered spaces.

Let B̃Ck(M,M0;π) ⊂ C̃k(M ;π) be the subspace of ordered configurations such that for some
i either mi ∈ M0 or xi = o|mi . Recall from the proof of Proposition 2.11 that the filtration
Ck(M,M0;π) is obtained as the pushout of the diagram Ck−1(M,M0;π)← BCk(M,M0;π)→
Ck(M ;π) where BCk(M,M0;π) = B̃Ck(M,M0;π)

/
Σk. Similarly the filtrations of the Borel

configuration spaces are obtained from the previous filtration as the pushout along a subspace
BCk(M,M0;π) ..= EΣk ×Σk B̃Ck(M,M0;π). The projection π induces a homotopy equivalence

BCk(M,M0;π)
'−→ BCk(M,M0;π) and a map of homotopy pushout squares. The result then

follows by induction as in the proof of Proposition 2.11. The result for the filtration quotients
is proved similarly.

Remark 4.5. The maps in the previous proposition are G-equivariant.

Proposition 4.6. There is a G-equivariant power-set map σ : C (M,M0;π)→ Γ+(V ) of filtered
spaces.

Proof. Fix k ≥ 0. Let α be an ordered set of cardinality k, for each 0 ≤ i ≤ k let Pi(α) be the
set of (unordered) subsets of α of size i. As α is ordered Pi(α) has an induced lexicographical
ordering and we may list its elements as: β1, . . . , β(ki)

.

Let ξα =
∑

j∈αmjxj be an ordered configuration in C̃k(M ;π). For each β ∈ Pi(α) let ξβ =∑
i∈βmjxj ∈ Ci(M ;π) be an unordered subconfiguration of ξα and let ξ̄β be its image under

the composition Ck → Ck → Dk → V . For each i define a map

C̃k(M ;π) −→ V (ki)

ξα 7−→
(
ξ̄β1 , . . . , ξ̄β(ki)

)
.

Σk naturally acts on Pi(α) since permuting the elements in α maps a subset of size i to
another subset of size i. This action defines a homomorphism Σk → Σ(ki)

. With this action,
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the above map is Σk-equivariant. For each k the direct sum of these homomorphisms defines a
homomorphism φk : Σk → Σ(k0)

⊕Σ(k1)
⊕· · ·⊕Σ(kk)

⊂ Σ2k . Together with the maps C̃k(M ;π)→

V (ki) this defines

σk : Ck(M ;π) = EΣk ×Σk C̃k(M ;π) −→ EΣ2k ×Σ
2k
V 2k .

We will now show that the σk’s fit together to define a map σ : C (M ;π) → Γ+(V ). To see
that σ respects the equivalence relations on each side, choose two equivalent Borel configu-
rations. We may assume they are of the form (w;m1, . . . ,mk;x1, . . . , xk) and its reduction
(R(w);m1, . . . ,mk−1;x1, . . . , xk−1). Since xk = o|mk or mk ∈ M0, any subconfiguration con-

taining (mk;xk) is mapped to the base-point in the appropriate copy of V ⊂ V 2k . The defining
relation of Γ+ identifies a point in V n with one in V n−1 if a coordinate lies in the base-point of
V . Precisely 2k−1 subconfigurations contain the particle (mk;xk). So noting that the square

Σk
φk //

R
��

Σ2k

R2k−1

��

Σk−1
φk−1

// Σ2k−1

commutes up to an isomorphism Σ2k → Σ2k and iterating the relation 2k−1 times we have

σk(w;m1, . . . ,mk;x1, . . . , xk) ∼ σk−1(R(w);m1, . . . ,mk−1;x1, . . . , xk−1).

To see that σ is a map of filtered spaces, note that by definition σ maps C k to Γ+(Vk) ⊂ Γ+(V )
where Vk ..=

∨k
i=1D

k. Finally, the construction is natural with respect to any inclusions of the
underlying fibration π into another fibration, and in particular it is G-equivariant.

Theorem 4.7. There is a stable homotopy equivalence

C (M,M0;π)
s'
∨
k≥1

Dk(M,M0;π)

induced by a G-equivariant map σ̄ : Γ+(C )→ Γ+(V ).

Proof. Let σ̄ denote the composition Γ+(C (M,M0;π))
Γ+σ−−−→ Γ+Γ+(V )

hV−−→ Γ+(V ) and note
that it restricts to a map of the filtrations and filtration quotients. σ̄ is G-equivariant as both
the Γ+-construction on a map and the construction hV are natural. We note now that the
image of Dk under σ is contained in EΣ1×Σ1 D

k = Dk and hence σ restricted to Dk factors as

Dk → Dk
ι
Dk

↪−−→ Γ+(Dk) where the first map is the weak homotopy equivalence in Proposition
4.4. Thus on the filtration quotients σ̄ factors as the composition

Γ+(Dk)
Γ+P−−−→ Γ+(Dk)

Γ+ι
Dk−−−−→ Γ+Γ+(Dk)

h
Dk−−−→ Γ+(Dk).

The first map is a homotopy equivalence since Γ+ is a homotopy functor. Also, the composition
hDk ◦Γ+ιDk is the identity by virtue of Γ+ being a monad. It follows that σ̄ : Γ+(Dk)→ Γ+(Dk)
is a homotopy equivalence.
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The Γ+ construction converts cofibrations to fibrations so for each k we can form a commutative
diagram in which the vertical sequences are fibrations.

Γ+(C k−1)
σ̄ //

��

Γ+(V k−1)

��

Γ+(C k)
σ̄ //

��

Γ+(V k)

��

Γ+(Dk)
σ̄ // Γ+(Dk)

By the above discussion the bottom arrow is always a homotopy equivalence. Since C 1 = D1 and
C1 = D1 = V 1 we proceed by induction on k to obtain a homotopy equivalence Γ+(C ) ' Γ+(V ).

By the results of [BE74b], a connected (or group-like) Γ+-algebra is an infinite loop space
and a morphism of such Γ+-algebras is a map of infinite loop spaces. Moreover, the free Γ+-
algebras correspond to free infinite loop spaces if the underlying space is path connected and
has the homotopy type of a CW-complex. By our assumptions on (M,M0) and X all the spaces
considered are path connected and have the homotopy types of CW-complexes. Furthermore,
by definition σ̄ and its restrictions are morphisms of Γ+-algebras. Thus the statement of the
theorem follows.

4.4 Induced splittings for mapping spaces

Combining the stable splitting of Theorem 4.7 with the fact that the scanning map is equivariant,
Theorem 3.11, we immediately deduce the following result.

Theorem 4.8. There is a zigzag of G-equivariant maps

Γ(WrM0,WrM ;π)←− E(M,M0;π) −→ C(M,M0;π)←− C (M,M0;π) −→
∨
k≥1

Dk(M,M0;π)

each of which is a stable homotopy equivalence. The zigzag induces a weak homotopy equivalence

Ω∞Σ∞(EGnG Γ(W rM0,W rM ;π)) '
∏
k≥1

Ω∞Σ∞
(
EGnG D

k(M,M0;π)
)
.

We now shift emphasis from configuration spaces to mapping spaces and adopt the notation D̄k

for the kth filtration quotient of

C(M rM0, ∂M rM0;π).

When M is parallelisable and π is a trivial bundle, the section space in the above theorem is
simply a mapping space. But even when M is not parallelisable, we can use configuration spaces
with twisted coefficients in the normal bundle of M to ‘untwist’ the section spaces so that they
become again mapping spaces.

Corollary 4.9. For N large enough, there is a homotopy equivalence

Ω∞Σ∞
(
EGnG Map(M,M0; ΣNX, ∗)

)
'
∏
k≥1

Ω∞Σ∞
(
EGnG D̄

k
)
.
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Proof. Let ν be a bundle such that TM ⊕ν is a trivial bundle. (To construct such a ν note that
M is compact and can be embedded in RN for some N large enough. ν may be taken to be the
normal bundle of the embedding.) Let π : Y = ν̇∧M (M×X)→M be the fibre bundle obtained
by taking the fibrewise smash product of X with the fibrewise one-point compactification of ν,
equipped with the canonical section at infinity. Note that

τπ|M = ṪM ∧M ν̇ ∧M (M ×X) ∼= ΣNX ×M

The result is now a special case of the previous theorem.

Example 4.10. If M is stably parallelisable, then for some N ∈ N there exists a trivial vector
bundle ν such that TM ⊕ ν is the trivial N -plane bundle on M . As ν is trivial, it admits an
action of the full diffeomorphism group of M . Then there is a homotopy equivalence

Ω∞Σ∞
(
EDiff(M) nDiff(M) Map(M ; ΣNX)

)
'
∏
k≥1

Ω∞Σ∞
(
EDiff(M) nDiff(M) D̄

k
)
.

When M is parallelisable we may take N equal to the dimension of M . For a compact Lie group
G and assuming further that M is G-parallelisable, this recovers the main theorem of [BM88].

Example 4.11. When M is the disc in Rn and M0 empty, we see that the Snaith stable splitting
of ΩnΣn(X) is equivariant under the action of Diff(Rn).

Example 4.12. When M is the n-sphere Sn ⊂ Rn+1 and M0 empty, then the normal bundle
ν is the one dimensional trivial bundle. Thus for π : Y = ν̇ ∧M (M ×X) 'M × ΣX →M

C(Sn, ∅;π) ' Map(Sn; Σn+1X).

This provides a model for the free higher loop space and a stable splitting, both of which are
Diff(Sn)-equivariant.

4.5 Stable injectivity for configurations and diffeomorphisms

Let M be as before, M0 = ∅ and ∂M 6= ∅. Assume further that π : Y →M has typical fibre X
which is path connected, and put π+ = π q idM : Y qM →M be the X+-bundle associated to
π. Note that in this situation neither (M,M0) nor X+ are connected. We have

C(M,M0;π+) = C(M ;π+) =
∐
k≥0

Ck(M ;π),

and though the scanning map is well-defined, it is no longer a (weak) homotopy equivalence.
Similarly, the power set maps are still well-defined. But as the filtration quotient Dk is just Ck
the splitting theorems are trivially true. Nevertheless, we will now apply the power set maps
to analyse the relation between the spaces Ck(M ;π) as k grows.

We first define inclusion maps that allow us to think of the configurations of k points as a
subspace of the configuration space of k + 1 points. Recall M ⊂M+ = M ∪ ∂M × [0, 1/2) and
π can be extended to M+ by pulling back along the natural projection M+ → M . Fix points
z0 ∈M+ rM and x0 ∈ π−1(z0). We define a stabilisation map

b : Ck(M ;π) −→ Ck+1(M+;π) −→ Ck+1(M ;π)
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where the first map adds the particle (z0, x0) to any configuration and the second map is an
injective homotopy equivalence induced by a map that isotopes M+ into M mapping ∂M ×
[0, 1/2) into a collar of ∂M in M while at the same time leaving the complement of the collar
fixed. As we assume that our diffeomorphisms always fix a collar of ∂M the following result
follows immediately from these definitions.

Proposition 4.13. The inclusion b : Ck(M ;π)→ Ck+1(M ;π) is G-equivariant.

The fact that the map b is stably split injective is well-known. The point of the next result
is that this can be done G-equivariantly and that therefore we have stable splittings of Borel
constructions.

Theorem 4.14. The inclusion maps b : Ck(M ;π) → Ck+1(M ;π) are G-equivariantly, stably
split injective. In particular, the induced maps

EG×G Ck(M ;π) −→ EG×G Ck+1(M ;π)

are stably split injective.

Proof. Let Ck = Ck(M ;π). Then via the map b we consider Ck−1 to be a subspace of Ck and
C = limk Ck(M ;π) is a filtered space with filtration quotient Dk = Ck/Ck−1. Let V k and V be
the wedge products of these. Since the inclusion map b is G-equivariant, G acts naturally on
Dk and hence V k and V .

As in section 4.3 we can also define Borel configuration spaces C k, C , etc. and a power set map

σk : C k = EΣk ×Σk C̃k(M ;π) −→ EΣ2k ×Σ
2k
V 2k

in this setting. As the action of Σk on C̃k is free, C k is (G-equivariantly) homotopy equivalent
to Ck and hence C to C. The arguments used in the proofs of Proposition 4.6 and Theorem
4.7 go through verbatim to show that the σk fit together to give a well-defined map of free
Γ+-spaces

σ̄ : Γ+(C ) −→ Γ+(V )

which is G-equivariant, filtration preserving and a homotopy equivalence. As both C and V are
connected, σ̄ is homotopy equivalent to a map of free infinite loop spaces. This proves the fact
that C and V are stably homotopy equivalent.

Collapsing Dk to a point defines a G-equivariant splitting of the inclusion V k → V k+1. Via σ̄
we conclude that stably C k → C k+1 and hence b : Ck → Ck+1 are also split injective.

Let M r k denote the manifold M with a set of k points deleted from the interior of M (away
from the collar of the boundary). Using the same maps on the underlying manifolds as in the
definition of b we can define a homomorphism of diffeomorphism groups

b̄ : Diff(M r k, ∂M) −→ Diff(M+ r k + 1, ∂M × [0, 1/2)) −→ Diff(M r k + 1; ∂M).

Theorem 4.15. The map b̄ : BDiff(M r k, ∂M) −→ BDiff(M r k + 1, ∂M) is stably split
injective. In particular the induced map in homology is a split injection in all degrees.

Proof. Fix k distinct points k = {z1, . . . zk} in the interior of M . Simultaneous evaluation of
diffeomorphisms on these points defines a fibration

Diff(M r k, ∂M) −→ Diff(M,∂M) −→ Ck(M)
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and hence a fibration of classifying spaces

Ck(M) −→ BDiff(M r k, ∂M) −→ BDiff(M,∂M).

Here we may take as a model for the total space of the latter fibration the Borel construction
on Ck(M) by the following general construction: given a topological group H with a closed
subgroup K the fibration K → H → H/K gives rise to a fibration H/K → EH ×H H/K '
EH/K → EH/H = BH where EH is a contractible space with a proper, free H-action; the
total space of the latter fibration is a model for BK.

With this identification, the result is now a special case of Theorem 4.14.

Remark 4.16. When M is an orientable surface F kg,n of genus g ≥ 1 with n ≥ 1 boundary
components and k punctures this specialises to a result in [BT01]. The proof in [BT01] uses
the geometric construction of the power set map. Unfortunately, as defined there it is not
equivariant. The construction needs to be replaced by the one in section 4.2 here.

In a forthcoming paper [Til] we will expand on the work here and show amongst other things
that the maps b̄ are furthermore isomorphims in homology in degrees ≤ k/2 thus establishing
a homology stability criteria for arbitrary manifolds and punctures.
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